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Abstract. The influence of lhe stress tensor fluctuations in the bulk on a liquid-gas interface is 
studied, using the generalized langevin equation formalism and the new fact (recently shown 
by the present authors) that these flucluations are spatially conelated because of the viscous 
dissipative interactions. In this way. finite surface wave characteristics such as the root mean 
square amplitude and energy density are established. In lhe litemlure the surface wave spatial 
correlations are treated by assuming an upper limit of wavevectm called a cut-off vector. It 
follows from the pment theory that the cut-off wavewloc is direcdy related to the dissipative 
correlation length, being of the order of the mean free path of molecules. 

1. Introduction 

In the present paper the behaviour of the transverse fluctuating waves on a liquid-gas 
interface produced by the stress tensor fluctuations in the bulk is described. The relation 
between the wave profile ( ( r ,  I) (r s ( x ,  y ) )  and the normal projection on the surface of 
the total stress tensor fluctuations AP = P - ( P ) ,  has the following standard Fourier form: 

( ( k , m )  = n ( k , m ) A P ( k , m )  (1) 

where a(k, m) is the linear susceptibility function. Knowledge of (Y and the statistical 
properties of A P provides the possibility of performing a correlation analysis of the 
amplitudes and their velocities. The stress tensor (P)< consists of the equilibrium stress 
tensor ( P )  of the fluid and the perturbation caused by the surface wave motion. It represents 
the mean value of the total stress tensor P averaged along the coordinates and pulses of the 
fluid particles by the restriction of a constant surface profile and is due to the random nature 
of the surface waves; it is also a random quantity with a mean value ( P ) .  Since the mean 
value of A f  is zero, it follows from (1) that (t) = 0; hence essential information about the 
behaviour of the surface waves has to be searched for in the higher statistical moments of 
(. such as the autocorrelation function 

( t (k ,m)T(k i .  01)) = m ) a ( k i , o t ) ( A f ( k , o )  AP(ki  ,mi)). (2) 

The equilibrium fluctuations A A  of the physical parameters A(r ,  t )  (in the present case, 
A L f or P) are. stationary and uniform stochastic processes [1,2], which justifies the 
presentation of their autocorrelation functions in the form 

( A @ ,  m)A(kt, WI)) = Cnn(k ,  0 ) 6 ( k  +k1)6(w + @I) (3) 
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where C a a ( k , w )  = ( l / a ) l ~ l ~ ( A ( r , t ) A ( r  + R , t  + r))cos(wr)JD(kR)RdRdr is the 
corresponding spectral density with Jo(,) being a Bessel function of the first kind of zero 
order. Also owing to the surface isotropy, the linear admittance function 01 depends only on 
the modulus of the wavevector [3,4]: a = a(k ,  U ) .  Thus, from (2)  and (3), a link between 
the spectral densities C,,(k, U )  and C p p ( k ,  w )  is obtained: 

R Tsekov and B Radoev 

C<c(k. 0) = W M - k ,  - U ) C p p ( k ,  0). ( 4 )  

From this relation, by knowledge of a ( k ,  w )  or C p p ( k ,  w )  and using the fluctuation- 
dissipation theorem (FDT), a number of correlation characteristics of the fluctuating capillary- 
gravity surface waves can be derived. The main aim of the present paper is to show that 
viscous-dissipative correlation of the stress tensor fluctuations recently established by the 
present authors [7,8] leads to a natural upper wavevector of the spatial spectral density of the 
fluctuating surface waves and to reasonable values for many of their mean characteristics. 

2. Fluctuationdissipation theorem 

The first step in the concretization of (4) is the application of the so-called second m~ 
connecting the dissipative and fluctuating forces in such a way that their coaction determines 
the tendency of the system towards a thermodynamic equilibrium state. The second FDT 
can be formulated by introducing a generalized Langevin equation (GLE) [ 1,561, governing 
the evolution of an arbitrary physical quantity A(t) of the system: 

According to this equation the evolution of A is the result of the coaction of the external 
force Fe and the fluctuating force Ff ((Ff)  = 0) related to A. The integral in (5) plays 
the role of a dissipative force Fd (viscous, ohmic, etc, resistance) and its kernel represents 
a quantitative expression for the second FDT. In the case of fluctuating capillary-gravity 
waves considered, the role of the fluctuating force will be played by the normal projection 
A P of the total stress tensor fluctuations on the interface. 

A necessary condition for performing the statistical analysis by the GLE (5) is knowledge 
of a phenomenological admittance function between the mean value of A and Fe, which 
determines the autocorrelation function of Ff. In the general case. the admittance function 
for capillary-gravity surface waves is rather complex [4]: 

a ( k ,  U )  = ( k / p ) / [ d  + (io + 2uk2)' - 4 ( ~ k ~ ) ~ , / m ] .  

This is not suitable for the description of the behaviour of fluctuating waves by the GLE 
(5). Here U: = y k 3 / p  + g k ,  y is the surface tension, p and U are the mass density and 
kinematic viscosity, respectively, of the liquid and g is the acceleration due to gravity. For 
simplicity and physical transparency the so-called high-viscosity approximation (o << uk2) 
for the admittance function a ( k ,  U )  will be applied [3,4]: 

orO(k, w )  = ( k / p ) / ( o ;  - w2 + 2iouk'). (6)  

As the main subject of interest in the present paper is to describe the upper cut-off 
limit of surface waves, the use of the high-viscosity approximation corresponding to high 
wavenumbers k is physically justified. 
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The susceptibility ao is equivalent to an evolution equation of the spatial Fourier 
components of the surface wave amplitude: 

( p / k ) I a 2 1 ( k  t)/at21 + 2 ~ v k I a F ( k  t ) / a t l =  -(yk2 +Pg)C'(k., t )  + AP(k,  t) (7) 

which compared with the GLE (5) leads to the following identifications: A 
@ / k ) [ a c ( k ,  f ) / a t ] ,  Fe AP(k ,  I) .  Because of the simple 
type of (7). the juxtaposition of the forces Fe, Fr and Fd is obvious. For instance the 
viscous friction in equation (7) is described by the second term Zpvk[a<(k, f),'at: and for 
this reason it corresponds to the dissipative force Fd: 

- ( yk2  + pg)C(k, t) and Ff 

dti. (AP(k ,  t )  A P ( k  ti)) a t ( k  t i )  2pvk- = 
at s ( ~ i k ~ a m ,  t)iari*) atl 

This last equation leads to a relation for the spectral density of the autocomelation function of 
the normal projection of the stress tensor fluctuations, representing a quantitative expression 
for the second FDT: 

(8) 
2 

w2C,,(k, o) dw C;,(k). 1: C p p ( k ,  0 o) = -vp2 
7I 

The superscript zero means that C$,(k) describes the fluctuations AP with accuracy 
corresponding to that of (YO. The next step in the further analysis is to present with the same 
aCcuracy the important relation (4) between the specVal densities Cpp and Cst .  

3. Stress tensor fluctuations 

The o-independence of the spectral density C;,(k) is due to the approximate description 
of the susceptibility a by a'. Since ao is obtained from the exact admittance function in 
the limit o --f 0, C$,(k) is equal to C p p ( k ,  o = 0).  Thus equation (4) is 

C < , ( k , o )  = aO(k, o)ao(-k. -w)Cpp(k, 0).  (9) 

As seen from (9). to obtain the autocorrelation function of the fluctuating capillary-vity 
wave amplitudes, knowledge of the spectral density Cpp(k, 0) is required. 

In a previous paper [7,8] the present authors have shown that the spectral density of 
the normal projection of the stress tensor fluctuations has the form Cpp(klc, orc), where 
IC - v / c  and r, - v/c2 are the viscousdissipative correlation length and time, c being the 
thermal velocity of the liquid particles. The same papers also lead to the conclusion that 
the spectral density Cppfk ,  0) could be expressed as 

Cpp(k,  0) = (I /x)2ksTpvkf(klc)  (10) 

where ksT is the Boltzmann factor and the unknown function f(.) has the asymptotic 
properties f ( 0 )  = I and f(03) = 0. Equation ( IO)  is the same as that proposed 
by the present authors from more general considerations [8]. Neglecting the viscous- 
dissipative correlations (c -+ 03 at constant v )  leads to the well known classical result 
C;p(k)  = ( l / z ) 'k sTpvk  191. 
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The physical nature of the viscous-dissipative correlation as a self-organization structure 
could be elucidated by means of the laws of local turbulence. In 1941, Oboukhov and 
Kolmogorov (cf [2, IO]) established a characteristic length L of the small-scale turbulence, 
below which the motion is laminar. The size of these turbulent subdomains obeys the 
relation L4 - u3 /w,  where w is the local power (per unit mass) of the dissipation of energy 
as viscous friction. Because of stationarity, the power w has to be equal to that of the external 
sources. In the description of fluctuations the thermal molecular movement plays the role 
of external source and w could be estimated as w - E / ? ,  E and 5 being the specific energy 
of the thermal motion and the excitation time of the fluctuations, respectively. Because of 
stationarity, the characteristic time t of the source has to be equal to the mean relaxation 
time L z / u  of the energy dissipation. From this viewpoint the Oboukhov-Kolmogorov law 
has an alternative expression as E - ( V / L ) ~ .  Since the specific energy of the thermal motion 
of molecules is proportional to their mean square velocity, i.e. E - c2, the size and lifetime 
of the fluctuations are estimated from this law as L - v/c and r - v/c2. i.e. they are 
identical with the correlation length 1, and time r, introduced above. 

4. Fluctuating capillary-gravity waves 

The main result obtained by combination of (6). (9) and (IO) is the expression for the 
spectral density Cccfk, w )  of the autocorrelation function of the fluctuating surface wave 
amplitudes: 

C<,(k,o) = (l/n)2((ksT~k3/p)/[(wz - U:)' + (2~k~0~)~ l l f (k l c ) .  (11) 

Equation (I  1) is similar to the well known classical result, the only difference being 
the presence of the function f(k1,). The classical expression could be considered as a 
limiting form of ( I  1) in the case when 1, = 0 ( f ( 0 )  = I )  corresponding to neglecting the 
viscous-dissipative spatial correlation. 

The spectral density Ctt(k, w )  is a basic quantity in the description of light scattering 
from Ruid interfaces [11-13]. The maximum in the frequency distribution experimentally 
observed is closely related to the values of the kinematic viscosity U and the local surface 
tension y .  This could be easily explained by the type of Ctc(k,o) defined in (11). A 
new result following from this expression is the dependence of the scattered light on the 
wavenumbers obtained by means of the function f ( k 1 , ) .  However, since the value of 1, is 
too small. this effect will be observed in the region of high wavevectors k 

Another consequence of the results reported here is the mean square velocity of 
the surface wave amplitude, which is expressed by the spectral density as follows: 

= 2S,00Somw2CeC(k,w)kdkdw. After substituting (11) in this relation the 
result ((a</at)*) = (ksT/2np)S,-f(kl~)kzdk = ksT/pV, is derived (Vc - j?12), which 
is in accordance with the classical notion of the equipartition energy distribution [2]. 

Further considerations require the spatial spectral density of the autocorrelation function 
of the surface wave amplitudes Kgg (k) to be obtained 

1;'. 

Equation (12) is close to the classical result obtained by Mandelstam [14]. The only 
difference is the presence of the function f(k1,). Since f ( 0 )  = 1, the thermodynamic 
sum rule 2xKc((O) = kaT/pg follows from (12). 
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The mean square local amplitude is a very interesting characteristic of the fluctuating 
capillary-gravity surface waves. It is defined by Kr<(k) as (tZ) = l," KCC(k)kdk and 
substituting in (12); after some rearrangements, (c2) is derived as 

where the so-called capillary length 1 = is introduced. From (13) and the 
properties of the function f(.) it follows that, in  the case when the viscous-dissipative 
spatial correlations (1, = 0) are neglected, (t2) will tend to infinity [14,15]. 

To avoid this contradiction between the classical spatial spectral density and the physical 
reality, Buff et a1 [15] intmduced an effective upper limit k, of the wavevectors (the so- 
called cut-off vector) and the mean square amplitude has the form 

As seen from (14). this procedure leads to a result similar to that of (13), but the value of 
k, remains unclear. In the literature, k;' is proposed to be proportional to the root mean 
square amplitude [15-171, the molecular diameter [6,12,181 and the intrinsic thickness of 
the interface [19]; other interpretations [20-22] are reported as well. However, none of 
these is connected to the existence of the spatial dissipative correlation, which is the basic 
element of the present theory. 

According to (13), the model (14) corresponds to a special type of the function 
f (kl,) = H(k,-k), where H(. )  is a Heaviside function. The upper limit k, of wavevectors 
should be determined by the relation k,l, - 1 (i.e. k,v - c) and have clearly expressed 
dissipative character. This relation shows that waves with a wavelength smaller than the 
correlation length of the bulk stress tensor fluctuations are not generated. To estimate 
k, it is necessary to take into account the following circumstances. Since k, is in the 
region of high wavevectors, where the kinematic viscosity depends significantly on the 
wavenumber [1,23] i.e. u(k) (it is not necessary to consider the o-dependence of U, because 
the present theory is an approximation for low frequencies), to determine k, one must use 
the relation k,u(k,) 5 c, where k, is the lowest wavevector satisfying this relation. From 
this expression and the asymptote of the kdependence of v (u(k) + c/k), Vk > A-', A 
being the mean free path of molecules [23]) it can be concluded that k, - A.-'. 

The mean free path of molecules in liquids is a rather complicated quantity [XI. For 
simple liquids an estimation of A can be proposed: A = V / r d Z G ( d ) ,  where V is the 
volume per molecule, d is the molecular diameter and G ( . )  is the pair distribution function. 
Experimental and theoretical data show that the values of G are in the range 1-5 [24]. 

In table 1 the values of k, experimentally measured by ellipsometry are presented. They 
are used to calculate A and G by means of the relation between the cut-off vector and the 
mean free path of molecules (k;* = A) proposed in this work. The obtained estimates of 
G (G = 1-7) are in good quantitative agreement with the values mentioned above, which 
shows that the cut-off vector predicted here is realistic. 

In the literature [I81 sometimes the behaviour of the mean square amplitude ({') in 
the limit g + 0 is discussed. As follows from equations (13) and (14), (r2(g + 0)) 
tends to infinity. This effect is due to the infinite depth of the liquid. In the case of a 
finite depth the divergence of Ktt(0) at g --t 0 disappears since a term accounting for 
the fluid compressibility should occur, leading to the well known thermodynamic limit 
2irKC5(0) = kBT/(pg + ~ / h ) ,  K being the liquid compressibility and h the liquid depth. 
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Table 1. Calculated dam of the pair distribution function G. 
~ ~~~~~~~ 

k;' P d 
Substance (A) M (kg m-') (A) G 

From the work of Bouhet (251 
Anethole 1.00 148 988 6.0 22 
Bramanaphthalene 0.92 201 1489 4.9 3.3 
Bromoform 0.93 253 2890 5.0 2.0 
Benzene 0.77 78 879 5.0 24 
p-xylene 0.74 106 860 5.6 2.8 
o-xylene 0.72 106 897 5.6 2.8 
Carbon tetrachloride 0.72 154 1594 5.2 27 
Quiniline 0.89 129 1094 5.5 2.3 
m-xylene 0.70 106 868 5.6 31) 
Cyclohexane 0.75 84 779 5.4 2.7 
Anisole 0.77 108 995 5.4 2.6 
Ethyl cinnimate 0.75 176 1049 6.2 3.1 
Dibmmyl ethane 0.80 188 2180 5.7 1.7 
Benzyl benwate 0.79 212 Ill2 6.5 3.0 
I-nonanol 0.65 144 827 6.1 3.8 
Ethyl acetate 0.64 88 900 5.2 3.0 
Ethyl benzoate 0.67 150 1046 5.9 3.3 
Ethanol 0.56 46 789 4.4 2.9 
Oleic acid 0.63 282 895 7.1 4.5 
Acetic acid 0.64 60 1049 4.3 25 
Diethyl oxalate 0.66 146 1078 5.8 3.3 
Nitrobenzene 0.59 123 1204 5.3 3.3 
Glycerin 0.88 92 1261 4.7 2.0 
Water 0.86 18 IWO 3.0 1.2 

From the work of Kizel 1261 
Pentane 0.38 12 626 
H e m e  0.29 86 660 
n-ocme 0.49 114 704 
l s o- o ct an e 0.45 114 703 
Methyl alcohol 0.31 32 793 
Ethyl alcohol 0.58 46 789 
n-propyl alcohol 0.52 60 804 
Iso-propyl alcohol 0.54 60 785 
n-butyl alcohol 0.62 74 810 
n-amyl alcohol 0.63 88 814 
Iso-amyl alcohol 0.58 88 812 
Owl alcohol 0.65 130 825 
Formic acid 0.34 46 1226 
Acetic acid 0.67 60 1049 
Propionic acid 0.65 14 992 
Butyric acid 0.60 88 959 
Caproic acid 0.71 116 945 
Pelargonic acid 0.65 158 905 
Palmitic acid 0.68 256 850 

5.5 5.4 
5.7 1.3 
6.1 4.7 
6.1 5.1 
3.9 4.6 
4.4 28 
4.7 3.4 
4.8 3.3 
5.1 3.0 
5.4 3.2 
5.4 3.5 
6.1 3.5 
3.8 4.1 
4.3 2.4 
4.7 2.1 
5.1 3.1 
5.6 2.9 
6.3 3.6 
7.6 4.1 

From the work of Beaglehole [ I I ,  19,271 
Cyclohexane 0.68 84 779 5.4 2.9 
Methanol 0.60 32 789 4.0 23 
Argon 1.01 40 1402 3.4 1.3 
Carbon tetrachloride 0.82 154 1594 5.2 2.3 
Water 1.08 18 1000 3.0 Id 
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Another interesting statistical characteristic of the fluctuating capillary-gravity waves 
is the correlation area S, of their amplitudes. A standard definition [2] S, = s,“ IK~~(R)l / ( fz)2rrRdR can be used, where &(R) is the spatial correlation function, 
Kct(k)  being its Fourier image. Owing to difficulties in the determination of the inverse 
Fourier image of the spectral density &(k) from equation (12) and the calculation of the 
integral, in the previous work [28] an alternative definition is introduced: 

leading to direct calculation of S, from the spectral density. 
It is seen from this equation that S, depends on both the capillary length I and the 

correlation length 1, of the stress tensor fluctuations. At temperatures much below the 
critical temperature (I >> le) ,  S, will be proportional to n1* (1 plays the role of the non- 
dissipative correlation length related to conservative interactions), which is a well known 
result [18]. However, close to the critical point the capillary length tends to zero and S< 
will be of the order of the bulk correlation area S, - TI: .  This behaviour is to be expected 
since at the critical temperature a bulk homogeneous system is established. 

In this manner the correlation area St of the surface wave amplitude velocities could 
be calculated: 

This result shows that the correlation length of the velocities is proportional to le, i.e. its 
viscoudissipative character is conlirmed once again. 

A difference should be made between the local surface tension y.  measured by the 
light scattering method [ 131 for instance, and the macroscopic (macrogeometric) value 
yo defined by yo = dW/(du dy), where d W  denotes the work of forming the interfacial 
surface. When the real situation at the interface is taken into account, this work can be 
expressed as dW = [ y ( l  + $((grad<)*)) + ipg(<2)]dxdy. Here both the real value of 
the area formation and the work related to the gravity force are taken into account. The 
replacement of this equation in the definition of yo leads to a link between y and yo: 
yo = y + 5 J,”(ykz + pg)K<<(k)kdk = y + ksT/2SC, where (12) is used. A similar 
relation expressed by k ,  is obtained by Buff er a1 [15]. 

From the above considerations it follows that yo is always higher than y as a 
consequence of the increase in the real area in comparison with the macrogeometric area 
The difference yo - y is equal to the work per unit area related to the existence of the 
fluctuating capillary-gravity waves. According to the equipartition law, it is equal to the 
surface density ksT/2S, of the kinetic energy of the fluctuating surface waves. 

5. Concluding remarks 

In the present paper the influence of the stress tensor fluctuations in the bulk on a liquid-gas 
interface is studied and, since they are spatially correlated because of the viscousdissipative 
interactions [7,8], finite surface wave characteristics such as mean square amplitude and 
energy density are established. In the literature the surface wave spatial correlations are 
treated by assuming an upper limit of wavevectors called a cut-off vector. It follows, from 
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the present theory, that the cut-off wavevector is directly related to the viscous-dissipative 
correlation length. 

The shear viscous flow is neither the single nor the most important dissipative effect 
which could influence the cut-off vector. All transport phenomena involved in entropy 
production should contribute to 1, by their phenomenological transfer coefficients (in the 
case of a liquid-gas interface these are shear and dilatation viscosities and heat conductivity 
[Z, IO]). Since k, is in the region of high wavevectors and all transfer coefficients tend to 
c / k ,  Vk t A-’ (the fluid particles can be considered almost free), the estimation k, - A-’ 
will be general. 

R Tsekov and B Radoev 
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